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Summary

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that is
characterized by increased cardiovascular morbidity and mortality, inde-
pendent of the traditional risk factors for cardiovascular disease. Although
classically known for its role in the regulation of circulatory homeostasis,
angiotensin II (Ang II) is recognized to act as a powerful proinflammatory
mediator. Some research has showed that Ang II plays important roles in
autoimmune diseases, including RA, systemic lupus erythematosus and mul-
tiple sclerosis. Ang II blockers prove effective in reducing inflammation and
autoimmunity in rheumatic diseases and their relative safety, together with
their effects for reducing the cardiovascular disease risk, suggest that Ang II
blockers may at least act as effective adjunctive therapy for disease control in
patients with RA. The present review focuses systematically on the potential
impact of Ang II and its receptors on inflammation and immunomodulation
in patients with RA.
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Introduction

Rheumatoid arthritis (RA) is a chronic multi-system
inflammatory disease of unknown aetiology, affecting
between 0·5 and 1% of the adult population, which is char-
acterized by articular and extra-articular involvement.
Patients with RA have a higher risk of mortality when com-
pared with the general population, which is due predomi-
nantly to increased cardiovascular disease (CVD) [1,2].
Current evidence suggests that both traditional risk factors
and disease characteristics contribute to the enhanced CVD
risk in RA [3,4]. The striking similarities between athero-
sclerotic vascular disease and states of RA have prompted
the hypothesis that enhanced systemic inflammation plays
an important role in the pathogenesis of CVD in RA
patients [5]. It has been shown that CVD risk is increased
early in the course of RA, and the absolute CVD risk in RA
patients is similar to that in non-RA individuals who are
5–10 years older [6]. Consequently, the emphasis of
research has shifted from the identification of the increased
CVD risk in RA towards the development of effective
approaches to reduce this risk. Much more work is needed
to develop preventative interventions yielding both inhibi-
tion of inflammation and reduction of CVD risk in RA.
Therefore, novel therapeutic strategies for RA patients are

needed, and drugs targeting the angiotensin pathway, par-
ticularly angiotensin II (Ang II) and its receptors, may be
considered to be one class of these drugs.

Ang II and its receptors

Ang II, a highly active octapeptide produced by
angiotensin-converting enzyme (ACE)-mediated cleavage
of angiotensin I, is known classically as a cardiovascular
mediator, with a primary role in the regulation of blood
pressure and body fluid homeostasis. Ang II has two major
receptor subtypes, the Ang II type 1A and 1B receptors
(AT1AR and AT1BR) and Ang II type 2 receptor (AT2R),
members of the seven transmembranes spanning the G
protein-coupled receptor superfamily [7]. The AT1R is well
known as an activator of the Gq/11 family, but under
certain circumstances AT1R may activate Gi/o and G12 [8].
Ang II also induces its actions through activation of the
Ras/Raf/mitogen-activated protein kinase (MAPK) signal-
ling cascade and the Janus cytosolic protein kinase (JAK)
signal transducers and activators of the transcription signal-
ling pathway [9]. AT2R activates unconventional signalling
pathways that generally do not involve coupling to classical
regulatory G proteins. AT2R is capable of activating protein
tyrosine phosphatase (PTP) such as MAPK phosphatase-1,
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src homology 2 domain-containing PTP and serine/
threonine phosphatase PP2A, depending on the cell types
[10].

Human cells express a single AT1R, while two subtypes,
AT1AR and AT1BR, with 95% amino acid sequence iden-
tity, can be found in rat and mouse. AT1AR, the closest
murine homologue to the human AT1R, is expressed in
various parts of the body and is associated with their
respective functions, such as in the kidney, heart, adrenal
cortex, vascular smooth muscle, liver and several other
tissues [11]. AT1BR is expressed predominantly in the ante-
rior pituitary gland and adrenal zona glomerulosa [12].
AT1R is comprised of 359 amino acids, while AT2R com-
prises 363 amino acids, being ∼30% homologous to AT1R,
and are both N-linked glycosylated post-translationally;
both receptors have high binding affinities for the Ang II.
AT2R is expressed ubiquitously in developing fetal tissue
and decreases dramatically after birth, remaining low in
various adult tissues, including adrenal medulla, uterus,
ovary, vascular endothelium and distinct brain areas [13].

Various components of the renin–angiotensin system
(RAS) are expressed on immune cells, and Ang II receptors
are present on lymphocytes and macrophages [14]. Ang II
elicits both its proinflammatory and pro-stress actions
mainly through stimulation of AT1R [15]. AT1R blockers
are known to have direct and indirect anti-inflammatory
actions [16]. Although data concerning the functions of
AT2R are still somewhat controversial, the majority support
the concept that AT2R has anti-proliferative, anti-
inflammatory and anti-fibrotic effects [13,17]. It has been
reported that the increased stimulation of AT2R may be
responsible for some of the therapeutic effects observed
during AT1R blockade [18,19]. Moreover, AT1R antagonists
are less effective in AT2R-deficient mice, again confirming
that AT2R play a pivotal role in the effect of AT1R antago-
nists [20].

Ang II and inflammatory immune responses

Ang II and inflammation

Although classically known for its role in the regulation of
circulatory homeostasis, Ang II is recognized to act as a
powerful proinflammatory mediator through stimulation of
AT1R [15]. In the course of inflammatory processes, exces-
sive local Ang II concentration increases vascular perme-
ability by stimulating the production of prostaglandins and
the vascular endothelial cell growth factor (VEGF), which
initiates the inflammatory responses [21]. Ang II
up-regulates adhesion molecules such as P-selectin, intercel-
lular adhesion molecule type 1 and vascular cell adhesion
molecule type 1 on vascular endothelial cells and smooth
muscle cells, and activates monocytes to adhere to them
[22,23]. Ang II also up-regulates the expression of
monocyte chemoattractant protein type 1 (MCP-1),

tumour necrosis factor (TNF)-α, interleukin (IL)-6 and
IL-8, which are potent chemoattractants and activators of
neutrophils [24]. In addition, Ang II increases acute inflam-
mation marker C-reactive protein (CRP) both in mRNA
and protein levels in macrophages via AT1R-mediated reac-
tive oxygen species (ROS) production and nuclear factor-
kappa B (NF-κB) activation [25]. CRP markedly
up-regulates AT1R mRNA and increases AT1R numbers
expressed on vascular smooth muscle cells [26]. Moreover,
Ang II can directly stimulate the proliferation and activa-
tion of lymphocytes and production of ROS in leucocytes
[27]. Therefore, Ang II signalling through the AT1R leads to
the activation of NF-κB with the subsequent production of
proinflammatory cytokines, chemokines and cell adhesion
molecules by resident cells, which contribute to the migra-
tion of inflammatory cells into sites of tissue injury, thereby
amplifying the inflammatory responses.

Ang II and innate immunity

There is increasing evidence that Ang II may activate innate
and adaptive immunity [28–30]; thus it performs as a
potent modulator in the immune system (Fig. 1). The role
of RAS as an immunological modulator was first suggested
by the presence of Ang II in macrophages [31]. The contri-
bution of macrophages in Ang II-induced vascular lesions
was evaluated in animals with impairment of innate
immunity [32]. Monocytes are important target cells of
Ang II and express both AT1R and AT2R, which have
substantial roles in promoting vascular inflammation and
metalloproteinase production [33]. In addition, Ang II
increases mononuclear cell accumulation through inducing
NF-κB activity and MCP-1 expression [34,35]. Natural
killer (NK) cells are fully equipped with RAS components
and are potentially capable of producing and delivering Ang
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II to sites of inflammation [36]. NK cell-derived interferon
(IFN)-γ plays an important role in propagating the activa-
tion and maturation of monocytes into macrophages and
dendritic cells (DCs) [37,38], representing an important
amplifying mechanism in the early innate inflammatory
response. Ang II can also induce rapid neutrophil infiltra-
tion by enhancing CXC chemokines, IL-8 and macrophage
inflammatory protein-2 [39]. Other studies have shown that
Ang II via AT1R increases neutrophil migration and stimu-
lates leucocyte–endothelium interactions [40,41].

The immunoregulatory activity of Ang II is also mediated
by activation of DCs, highly specialized antigen-presenting
cells responsible for inflammation defence and immune
responses. Cultured DCs express both AT1R and AT2R, and
Ang II enhances DCs migration, maturation and antigen-
presenting ability by interacting with AT1R [29,42]. Block-
ade of AT1R not only inhibits DCs differentiation, but also
switches the differentiation of monocytes into macrophage-
like cells [43,44]. It has been shown that Ang II-induces
up-regulation of phenotypical molecules and the increase of
inflammatory cytokines in human monocyte-derived DCs
via modulating the balance of the negative or positive regu-
lation of the signalling pathways of extracellular signal-
regulated kinase (ERK), p38 MAPK and NF-κB [42,45,46].
Blockade of AT1R with candesartan, losartan or irbesartan
causes poor endocytic and allostimulatory activity in DCs
differentiated from human monocytes.

Ang II and adaptive immunity

Evidence suggests that Ang II regulates immune responses
by using a calcineurin-dependent pathway through AT1R,
indicating a direct effect on T cells. Studies have shown that
the ACE inhibitor (ACEI) captopril blocks activation-
induced apoptosis in T cells and hence may interfere with
clonal deletion and disturb the maintenance of self-
tolerance, thus facilitating autoimmunity [47,48]. Chronic
Ang II infusion augments the expression of CD4+ T cells
harbouring the early activation marker CD69 in vivo and in
vitro, as well as the tissue-homing proteins CD44 and CCR5
in vitro. Mouse T and B cells isolated from the spleen
express AT1AR and Ang II regulates the proliferation of
wild-type but not AT1AR-deficient (agt1ar–/–) splenic lym-
phocytes [49]. Activated T cells may themselves generate
Ang II locally to influence cell function in an autocrine
manner. Ang II, acting through the AT1R on T cells, acts as
a co-stimulus for T cell activation, proliferation and differ-
entiation [38,50], and through AT1R Ang II induces an
increase in IFN-γ and a reduction in IL-4, suggesting that
Ang II may induce differentiation to the T helper type 1
(Th1) phenotype [50]. Similarly, Ang II stimulates the pro-
duction of IFN-γ and TNF-α by peripheral T cells [51] and
is capable of stimulating a Th1 response in ApoE-deficient
mice [30]. Ang II receptor blockers (ARBs) (olmesartan,
candesartan and telmisartan) have also been shown to

inhibit antigen-specific immune responses for Th1 and Th2
[52]. Madhur et al. [53] have demonstrated that Ang II also
induces Th17 responses. They found that Ang II infusion
increases IL-17 production and IL-17 protein in the aortic
media. Moreover, vascular dysfunction in response to Ang
II is abolished in IL-17–/– mice. In addition, regulatory T
cells (Tregs) express AT1R, as do circulating T cell subsets in
humans [54,55]. In mice receiving chronic Ang II infusion,
Treg intravenous administration prevents macrophage and T
cell infiltration in aorta. Kvakan et al. [56] demonstrated
that transfer of Treg interferes with Ang II-induced inflam-
matory and immune responses.

Ang II and RA

Animal model studies

The above observations, that Ang II mediates inflammation
and modulates T cell-mediated immune responses, suggest
a possible role of the peptide in autoimmune diseases.
Several studies have shown the beneficial effects of ARB and
ACEI use in animal models of induced arthritis. Previously,
reports have described the anti-inflammatory activity of the
ACEIs in the animal model of acute and chronic arthritis
[57,58]. It has been demonstrated that the non-thiol ACEI
quinapril has significant anti-inflammatory properties, suf-
ficient to suppress the severity of collagen-induced arthritis
(CIA), either as prophylaxis or as therapy in established
disease [59]. Suppression of arthritis by quinapril may be
associated with reduced TNF-α production within the
joints. Sagawa and colleagues reported that ARB olmesartan
suppressed the development of severe arthritis and joint
destruction in the CIA model, even when it was adminis-
tered only after disease onset. They showed that olmesartan
significantly suppressed lymphocyte proliferation and
IFN-γ production in mice immunized with ovalbumin or
type II collagen in Freund’s complete adjuvant in vivo [53].
In a rat model of adjuvant arthritis (AA), the Ang II infu-
sion induced hypertensive response, endothelial dysfunc-
tion and vascular hypertrophy in rats with AA [60]. In
addition, Ang II-induced expression levels of both AT1R
and ACE were significantly enhanced in rats with AA com-
pared with control rats. Both ARBs losartan and irbesartan
decreased the levels of superoxide and the expression, activ-
ity of NAD(P)H oxidases and improved endothelial dys-
function in antigen-induced arthritis (AIA). However,
neither losartan nor irbesartan influenced the clinical sever-
ity of arthritis or body weight in rats with AA. More
recently, it was reported that losartan reduced local signs of
inflammation (pain and oedema) and ameliorated histo-
logical joints changes both in murine AIA and rat AA. They
observed that losartan decreased neutrophil recruitment,
the production of TNF-α, IL-1β and chemokine (CXC
motif) ligand 1, and directly inhibited leucocyte–
endothelium interactions [61]. Mackenzie et al. demon-
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strated for the first time that AT1R blockade with losartan
significantly reversed an impaired endothelium-derived
hyperpolarizing factor relaxation in a rat model of AA [62].
It seems likely that the mechanism underlying these find-
ings is an AT1R-mediated reduction in the function of
connexin components of myoendothelial gap junctions.
The results suggest that the angiotensin pathway may be
involved in endothelial cell dysfunction, which have impor-
tant implications in reducing the cardiovascular morbidity
and mortality associated with RA [63,64]. Refaat et al.
showed that losartan and methotrexate combined therapy
showed better results than methotrexate and losartan alone.
The combined therapy significantly improved paw and liver
histopathology, reduced albumin, CRP, nitrite/nitrate con-
centrations and decreased IL-1β, TNF-α, VEGF, aspartate
transaminase and alanine transaminase levels [65]. The
study showed that losartan increased the efficacy of metho-
trexate therapy in AA rats with no evidence of toxicity.
Moreover, losartan, as a hepatoprotective agent, could
decrease the extent of methotrexate-induced hepatotoxicity
which is likely to occur after a prolonged period of expo-
sure. Furthermore, our research group reported recently
that the losartan-induced therapeutic effects on AA rats in
vivo might be correlated with the up-regulation of AT2R
and the down-regulation of AT1R [66]. Additionally, intra-
articular injection of AA rats with AT2R agonist CGP42112
significantly decreased the severity of arthritis. In vitro,
CGP42112 effectively inhibited the chemotaxis of IL-1β
stimulated-AA monocytes, up-regulated AT2R and down-
regulation of AT1R within stimulated AA monocytes. The
study suggests strongly that the up-regulation of AT2R
might be an additional mechanism by which losartan exerts
its therapeutic effects in AA rats.

Human studies

Indeed, AT1R is present and up-regulation in the synovium
of patients with RA has been described previously [67,68].
It has been postulated that locally generated Ang II acts on
synovial angiotensin receptors to modulate synovial hyper-
plasia. Recently, Kawakami et al. [69] found AT1R and
AT2R expression in articular chondrocytes in RA patients
and showed that IL-1 was able to regulate the expression of
these receptors. Elevated ACE activity has been demon-
strated in blood monocytes, rheumatoid nodules and
synovial membranes of patients with RA [70–73]. Evidence
for the increased presence of ACE in tissues from arthritic
patients, together with the ability of ACEIs to suppress
NF-κB and inflammatory cytokines such as TNF-α and
IL-1β, suggest that therapy with tissue-specific ACEIs would
be beneficial in arthritis [74].

Martin et al. reported in the early 1980s that the ACEI
captopril was clinically beneficial in the treatment of RA in
a small open study [75]. The drug was assessed for disease-
modifying activity in an open trial involving 15 active RA

patients who were followed for 48 weeks. Of the 15 patients,
10 patients reported improvement in all clinical symptoms,
including reductions in joint symptoms and the number of
swollen joints, and reduced levels of CRP at 24 and 48
weeks. However, the clinical benefit of captopril was subse-
quently attributed to the presence of a thiol group in the
compound structure, which was similar to those of the
immunosuppressant penicillamine, and not to ACEIs per se.
In an open study using the non-thiol-ACEI pentopril, no
clinical improvement in patients with RA was observed,
although CRP levels decreased significantly at 16 weeks
[76]. However, the pentopril study may have been powered
inadequately to detect significant differences due to the
small sample size. In a small, randomized, double-blind
study of 11 patients, ACEIs with 10 mg/d ramipril for 8
weeks in addition to current anti-inflammatory treatment
markedly improved endothelial function and reduced
plasma concentrations of TNF-α and soluble CD40,
although other inflammation parameters such as CRP, IL-1,
IL-6, myeloperoxidase and erythrocyte sedimentation rate
were not influenced [77]. In vitro, captopril significantly
suppressed TNF-α and IL-1 production in healthy human
peripheral blood mononuclear cells stimulated by
lipopolysaccharide [61].

There has been little investigation of the potential thera-
peutic benefits of targeting the pathway with the ARBs.
AT1R antagonism losartan use was found to be associated
with a significant reduction in CRP and erythrocyte sedi-
mentation rate, key indicators of inflammation, in patients
with RA [78]. A functional relationship between CRP and
Ang II has been demonstrated previously. In addition,
in-vitro losartan suppressed TNF-α production from
inflamed human synovium in RA patients in a dose-
dependent manner [68].

Clinical implication of Ang II interruption in RA

RA has been widely recognized to increase the risk of CVD,
with mortality rates from a 1·5- to twofold increase com-
pared with the general population [1,2], but no disease-
specific treatment strategies have been agreed upon. Many
factors contribute to the elevated CVD risk in RA. Systemic
inflammation and its interplay with traditional and nontra-
ditional cardiovascular risk factors appear to have a major
role. Recent studies also support the concept of RA as an
independent cardiovascular risk factor, analogous to diabe-
tes mellitus, by demonstrating the independent association
of RA with both preclinical and overt CVD [79]. It has been
well established that activation of the RAS plays a major
role in the physiology and pathophysiology of the cardio-
vascular system. Ang II, the main effector molecule of the
RAS, contributes to the development of CVD as both a sys-
temic endocrine hormone and a local autocrine/paracrine
hormone, producing acute and chronic effects. Ang II regu-
lates not only adhesion molecules expression but also
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cytokines, chemokines and growth factor secretion
within the arterial wall. Although the RAS is involved in
inflammation and immune responses of autoimmune dis-
orders, including RA [80], the role of RAS in the patho-
physiology of vasculopathies of RA has yet to be established
clearly. Ang II is implicated in the up-regulation of
proinflammatory cytokines, such as TNF-α, IL-1 and IL-6
[42], and conversely [81,82], on the basis of this evidence,
may contribute to the pathogenesis of RA. Ang II is not only
a chemotactic factor for mononuclear cells, neutrophils, T
and B cells but also a growth factor for regulating cellular
growth, fibroblast proliferation and angiogenesis [83].
Up-regulated proinflammatory cytokines, inflammatory cell
infiltration and angiogenesis are the key features of rheu-
matoid synovitis [84]. Furthermore, ACE was localized to
fibroblast-like stromal cells and vascular endothelium in the
synovial membrane in RA patients [73]. Synovial fluid ACE
levels were universally increased in RA patients compared to
OA patients [72]. Locally generated Ang II may act upon
synovial AT1R to modulate synovial perfusion and growth
present in inflammatory arthritis [67].

Many therapeutic drug options for RA demonstrate con-
flicting results regarding CVD risk. Early effective anti-
rheumatic treatment (e.g. methotrexate and TNF
inhibitors) has been shown be associated with a lower CVD
[85,86]. Some studies have shown that TNF blockade has a
transient beneficial effect on CV function [87]. Long-term
safety analysis of rituximab demonstrated no notable differ-
ences in serious CVD events during placebo-controlled
periods [88]. Tocilizumab, a humanized mAb against the
IL-6 receptor, has demonstrated an adverse impact on lipid
profiles [89]. Similarly, tofacitinib, a new oral JAK inhibitor,
recently approved for use in patients with RA, is also associ-
ated with significantly increased mean low-density lipopro-
tein levels compared with placebo [90]. Therefore,
additional therapeutic strategies are needed to develop
defensible interventions yielding both inhibition of inflam-
mation and reduction of CVD risk in RA.

Clinically, RAS blockade exerts potent dual effects, not
only through cardiovascular protective effects but also
through anti-inflammatory and immunomodulatory prop-
erties. Indeed, ARBs and ACEIs have been demonstrated to
reduce mortality and morbidity from cardiovascular events
among patients with hypertension, ischaemic heart disease
and renal disease [91]. RA is associated with an increase in
CVD risk, whereas hypertension is a major modifiable CVD
risk factor with a high prevalence in patients with RA [92].
As suggested by the recent recommendations of the Euro-
pean League Against Rheumatism [93], hypertension
should be placed at the top of the research agenda for the
reduction of CVD risk in RA. Although specific direct evi-
dence in RA is lacking, it seems reasonable to suggest that
early detection and aggressive management of hypertension
in patients with RA should form part of such a systematic
approach. Thus, ARBs and ACEIs may have the therapeutic

option of a double effect: anti-hypertensive and anti-
inflammatory. Although Ang II interruption will probably
never replace anti-rheumatic treatments such as methotrex-
ate and biological agents, ACEIs or ARBs may be the first
choice of anti-hypertensive agents in RA patients.

Despite some pharmacological similarities between
ACEIs and ARBs, important pharmacological differences
may have clinical implications. The ACEIs act by inhibiting
ACE that catalyses the conversion of inactive Ang I to active
Ang II, resulting in reduced levels of Ang II. A confounding
problem with ACEIs is their relative lack of specificity for
angiotensin conversion [94]. In addition, the development
of a persistent dry cough in patients receiving ACEIs
therapy is thought to be due primarily to bradykinin or
substance P accumulation [95]. Furthermore, Ang II also
can be produced from chymase, a tissue-specific enzyme
originally discovered in mast cells that can make Ang II
independent of ACE [96]. Thus, ACEI therapy may only
partially inhibit Ang II activity.

ARBs avoid this because they selectively inhibit the action
of Ang II at the receptor level. ARBs act independently of
the Ang II synthetic pathway, allowing a more selective
blockade of AT1R-mediated effects of Ang II compared with
ACEIs. ARB therapy may also induce anti-inflammatory
mechanisms through increased AT2R stimulation. Some
researchers believe that stimulation of the AT2R has an
opposite effect to that of the AT1R to anti-inflammatory
activity [9,19]. Under AT1R blockade, the enhanced Ang II
levels may result in increased activation of AT2R which, in
turn, may confer additional benefit, as persistent AT2R acti-
vation is considered to oppose the actions of the AT1R [19].
In this way, the ability of Ang II to stimulate AT2R in the
presence of AT1R blockade could provide additional com-
plementary therapeutic benefit (Fig. 2). There was a sus-
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tained, enhanced effect of combined AT2R stimulation plus
AT1R blockade that was greater than AT1R blockade alone
[97], together with the absence of functional AT2R desensi-
tization [98]. Therefore, AT2R agonists may also be
regarded as one of the novel classes of drugs which could be
used in the treatment of inflammatory and immune dis-
eases in the future.

Concluding remarks

Evidence has indicated that Ang II is a potent pro-
inflammatory mediator in autoimmune diseases, which
suggests that Ang II blockers may at least act as effectively as
adjunctive therapy for disease control in patients with RA. It
is noteworthy that statins, similar to ACEIs and ARBs, have
positive effects on endothelial progenitor cells and inhibit
inflammation, which is desirable in autoimmune rheumatic
diseases [99]. Because chronic inflammatory diseases are
associated with an increased burden of CVD, Ang II inhibi-
tors are of interest from the dual perspectives of disease
modification and cardiovascular risk reduction. The evi-
dence reported thus far suggests that ARBs may constitute
an appropriate first-line therapy for hypertension in RA.
Nevertheless, large, randomized, prospective, placebo-
controlled studies are needed to confirm any anti-
inflammatory actions of Ang II suppression in patients with
RA.
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